Suchen
 
 

Ergebnisse in:
 


Rechercher Fortgeschrittene Suche

Die neuesten Themen
» Opferzahlen des 1 . WW
Heute um 10:18 am von checker

» Das Erholungslager
Heute um 9:59 am von checker

» Das Lager Borrieswalde – Soldatenfriedhof Apremont
Heute um 9:46 am von checker

» Die weißen Mönche
Heute um 9:28 am von checker

» Die Rote Kapelle
Heute um 9:21 am von checker

» Das Todesgedicht
Di Mai 23, 2017 9:44 am von Andy

» R.I.P. Bertl
Di Mai 23, 2017 8:51 am von checker

» ** Die Bode **
Di Mai 16, 2017 2:41 am von Andy

» Kronland und die Kronländer
Di Mai 16, 2017 1:56 am von Andy

Navigation
 Portal
 Index
 Mitglieder
 Profil
 FAQ
 Suchen
Partner
free forum
Mai 2017
MoDiMiDoFrSaSo
1234567
891011121314
15161718192021
22232425262728
293031    

Kalender Kalender


Die organische Chemie (kurz: OC)

Vorheriges Thema anzeigen Nächstes Thema anzeigen Nach unten

Die organische Chemie (kurz: OC)

Beitrag  checker am Fr Feb 19, 2016 5:45 am

Die organische Chemie (kurz: OC), häufig auch kurz Organik, ist ein Teilgebiet der Chemie, in dem die chemischen Verbindungen behandelt werden, die auf Kohlenstoff basieren, mit Ausnahme einiger anorganischer Kohlenstoffverbindungen (Zusammenstellung der Ausnahmen unten) und des elementaren (reinen) Kohlenstoffs.


Klassische Molekülgeometrie der organischen Chemie – Benzolformel von Kekulé, dargestellt auf einer Briefmarke aus dem Jahre 1964

Die große Bindungsfähigkeit des Kohlenstoffatoms ermöglicht eine Vielzahl von unterschiedlichen Bindungen zu anderen Atomen. Während viele anorganische Stoffe durch Temperatureinfluss und katalytische Reagenzien nicht verändert werden, finden organische Reaktionen oft bei Raumtemperatur oder leicht erhöhter Temperatur mit katalytischen Mengen an Reagenzien statt. Auch die Entstehung der Vielzahl der Naturstoffe (pflanzliche, tierische Farbstoffe, Zucker, Fette, Proteine, Nukleinsäuren) und letztlich der bekannten Lebewesen basiert auf dieser Bindungsfähigkeit.

Organische Moleküle enthalten als Elemente neben Kohlenstoff häufig Wasserstoff, Sauerstoff, Stickstoff, Halogene; die chemische Struktur und die funktionellen Gruppen sind die Grundlage für die Verschiedenartigkeit der Einzelmoleküle.

In der organischen Analytik erfolgt zunächst aus einem Gemisch von Stoffen eine physikalische Trennung und Charakterisierung (Schmelzpunkt, Siedepunkt, Brechungsindex) von Einzelstoffen, dann werden die elementare Zusammensetzung (Elementaranalyse), Molekülmasse und funktionellen Gruppen (mit Hilfe von chemischen Reagenzien, NMR-, IR- und UV-Spektroskopie) bestimmt.

Außerdem untersuchen organische Chemiker die Einwirkung von Reagenzien (Säuren, Basen, anorganischen und organischen Stoffen) auf organische Stoffe, um Gesetzmäßigkeiten von chemischen Reagenzien auf bestimmte funktionelle Gruppen und Stoffgruppen zu bestimmen.


Nicotin – ein Alkaloid

Aus der Kenntnis der Vielzahl von Gesetzmäßigkeiten kann ein organischer Chemiker eigenständig Synthesen von organischen Naturstoffen (z. B. Zucker, Peptide, Naturfarbstoffe, Alkaloide, Vitamine) planen oder in der Natur unbekannte organische Stoffe (Kunststoffe, Ionenaustauscher, Arzneistoffe, Pflanzenschutzmittel, Kunstfasern für Kleidungsstücke) synthetisieren, die den Wohlstand einer Gesellschaft erheblich beeinflussen.

Die Entwicklungen der organischen Chemie hatten in den letzten 150 Jahren einen bedeutenden Einfluss auf die menschliche Gesundheit, die Ernährung, die Kleidung und auf die Zahl verfügbarer Konsumgüter.

Abgrenzung zur anorganischen Chemie

Mit wenigen Ausnahmen umfasst die Organik die Chemie aller Verbindungen, die der Kohlenstoff mit sich selbst und anderen Elementen eingeht. Dazu gehören auch alle Bausteine des derzeit bekannten Lebens. Im Jahre 2012 waren etwa 40 Millionen organische Verbindungen bekannt.

Ausnahmen sind formal zunächst die elementaren Formen des Kohlenstoffs (Graphit, Diamant) und systematisch alle zur anorganischen Chemie zählenden wasserstofffreien Chalkogenide des Kohlenstoffs (Kohlenstoffmonoxid, Kohlenstoffdioxid, Schwefelkohlenstoff), die Kohlensäure und Carbonate, die Carbide sowie die ionischen Cyanide, Cyanate und Thiocyanate (siehe Kohlenstoff-Verbindungen).

Die Blausäure gehört zum Grenzgebiet der anorganischen und organischen Chemie. Obwohl man sie traditionell zur anorganischen Chemie zählen würde, wird sie als Nitril (organische Stoffgruppe) der Ameisensäure aufgefasst. Die Cyanide werden in der Anorganik behandelt, wobei hier nur die Salze der Blausäure gemeint sind, wohingegen die unter selbigem Namen bekannten Ester als Nitrile zur Organik gehören. Auch die Cyansauerstoffsäuren, Thiocyansäuren und deren Ester gelten als Grenzfälle. Weiter ist die metallorganische Chemie (Metallorganyle) nicht konkret der organischen oder anorganischen Chemie zuzuordnen.

Auch völlig unnatürlich wirkende Stoffe, wie Kunststoffe und Erdöl, zählen zu den organischen Verbindungen, da sie wie die Substanzen von Lebensformen aus Kohlenstoffverbindungen bestehen. Erdöl, Erdgas und Kohle, die Ausgangsstoffe für viele synthetische Produkte, sind letztlich organischen Ursprungs.

Alle Lebewesen enthalten organische Stoffe: Aminosäuren, Proteine, Kohlenhydrate und die DNA. Das Teilgebiet der organischen Chemie, das sich mit den Stoffen und Stoffwechselprozessen in Lebewesen befasst, ist die Biochemie (oder auch Molekularbiologie).
Allgemeines

Die Sonderstellung des Kohlenstoffs beruht darauf, dass das Kohlenstoffatom vier Bindungselektronen hat, wodurch es unpolare Bindungen mit ein bis vier weiteren Kohlenstoffatomen eingehen kann. Dadurch können lineare oder verzweigte Kohlenstoffketten sowie Kohlenstoffringe entstehen, die an den nicht mit Kohlenstoff besetzten Bindungselektronen mit Wasserstoff und anderen Elementen (vorwiegend Sauerstoff, Stickstoff, Schwefel, Phosphor) verbunden sind, was zu großen und sehr großen Molekülen (z. B. Homo- und Heteropolymere) führen kann und die riesige Vielfalt an organischen Molekülen erklärt. Von dem ebenfalls vierbindigen Silicium gibt es auch eine große Anzahl Verbindungen, aber bei Weitem keine solche Vielfalt.

Die Eigenschaften organischer Substanzen werden sehr stark von ihrer jeweiligen Molekülstruktur bestimmt. Selbst die Eigenschaften von einfachen organischen Salzen wie den Acetaten werden deutlich von der Molekülform des organischen Teils geprägt. Es gibt auch viele Isomere, das sind Verbindungen mit der gleichen Gesamtzusammensetzung (Summenformel), aber unterschiedlicher Struktur (Strukturformel).

Dagegen bestehen die Moleküle in der anorganischen Chemie meist nur aus einigen wenigen Atomen, bei denen die allgemeinen Eigenschaften von Festkörpern, Kristallen und/oder Ionen zum Tragen kommen. Es gibt aber auch Polymere, die keinen Kohlenstoff enthalten (oder nur in Nebengruppen), z. B. die Silane.

Organische Synthesestrategien unterscheiden sich von Synthesen in der anorganischen Chemie, da organische Moleküle meist Stück für Stück aufgebaut werden können. Etwa 60 % der Chemiker in Deutschland und den USA haben als Schwerpunktfach die organische Chemie gewählt.

Geschichte

Viele organische Naturstoffe wurden schon in der Frühzeit der menschlichen Entwicklung genutzt (die Farbstoffe Indigo, Alizarin, die ätherischen Öle, Weingeist). Eine künstliche Darstellung von organischen Stoffen durch Menschenhand ist jedoch in sehr früher Zeit nicht beschrieben worden.

Johann Rudolph Glauber beschrieb in seinen Werken eine Vielzahl von selbst dargestellten organischen Verbindungen, da jedoch die Elementaranalyse noch nicht entwickelt war, kann nur vermutet werden, welche Stoffe er damals erhalten hatte. Weingeist und Essig reinigte Glauber über eine fraktionierte Destillation, Ethylchlorid erhielt er aus Weingeist,[1] Essigsäure aus der Holzdestillation,[2] Aceton aus der Erhitzung von Zinkazetat,[3] Acrolein entstand bei der Destillation von Rüb-, Nuss- und Hanföl,[4] Benzol aus Steinkohle,[5] Alkaloide fand er durch eine Salpetersäure-Trennung.[6]

Lemery schrieb 1675 das Buch Cours de Chymie. In diesem Werk wurden die Stoffe in drei Gebiete eingeteilt: Mineralreich (Metalle, Wasser, Luft, Kochsalz, Gips), Pflanzenreich (Zucker, Stärke, Harze, Wachs, Pflanzenfarbstoffe), Tierreich (Fette, Eiweiße, Hornsubstanzen). Lemery unterschied auch die Stoffe des Pflanzen- und Tierreiches als organische Stoffe im Gegensatz zu den Stoffen der unbelebten Natur des Mineralreiches.

Bereits im 18. Jahrhundert war eine beträchtliche Zahl von organischen Substanzen als Reinstoff isoliert worden.

Beispiele sind der Harnstoff (1773 von Hilaire Rouelle) und viele Säuren, wie die von Ameisen erhaltene Ameisensäure (1749 von Andreas Sigismund Marggraf), die Äpfelsäure aus Äpfeln, und die aus dem Weinstein gewonnene Weinsäure (1769), die Citronensäure (1784), das Glycerin (1783), die Oxalsäure, die Harnsäure (von Carl Wilhelm Scheele).

Antoine Laurent de Lavoisier bestimmte erstmals qualitativ die in organischen Stoffen enthaltenen chemischen Elemente: Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff. Joseph Louis Gay-Lussac und Louis Jacques Thenard führten erste Elementaranalysen zur Ermittlung der quantitativen Zusammensetzung von Elementen in organischen Stoffen aus. Die Elementaranalyse wurde 1831 von Justus von Liebig verbessert.[7] Nun konnte die elementare Zusammensetzung von organischen Stoffen schnell bestimmt werden.

Jöns Jakob Berzelius stellte die These auf, dass organische Stoffe nur durch eine besondere Lebenskraft im pflanzlichen, tierischen oder menschlichen Organismus geschaffen werden kann. Berzelius wendete auch das Gesetz der multiplen Proportionen – mit dem er im Bereich der anorganischen Verbindungen Atomgewichte und Zusammensetzung, d. h. deren chemische Formeln, bestimmen konnte auch auf organische Verbindungen an.[8]

Die Struktur und Zusammensetzung von organischen Verbindungen war um 1820 noch sehr ungeklärt. Gay-Lussac glaubte, dass das Ethanol eine Verbindung aus einem Teil Ethen und einem Teil Wasser sei.

Weiterhin glaubten die Chemiker damals, dass bei gleicher qualitativer und quantitativer Zusammensetzung (Summenformel) der Elemente einer Verbindung (Elementaranalyse) die Stoffe auch identisch sein müssen. Erste Zweifel traten im Jahr 1823 auf als Justus von Liebig und Friedrich Wöhler das knallsaure Silber sowie das cyansaure Silber untersuchten. Sie fanden bei gleicher chemischer Zusammensetzung sehr unterschiedliche Stoffe.[9]

Im Jahr 1828 erhitzte Friedrich Wöhler Ammoniumcyanat und erhielt einen ganz andersartigen Stoff, den Harnstoff.[10] Ausgangsprodukt und Endprodukt haben die gleiche chemische Summenformel (Isomerie), sie besitzen jedoch sehr unterschiedliche Eigenschaften: das Ammoniumcyanat ist eine anorganische Verbindung, der Harnstoff ist eine organische Verbindung. Damit war die Hypothese von Berzelius, dass organische Verbindungen nur durch eine besondere Lebenskraft entstehen können, widerlegt.

Hermann Kolbe formulierte 1859 die These, dass alle organischen Stoffe Abkömmlinge der anorganischen Stoffe – insbesondere des Kohlenstoffdioxids – sind. So ergibt der Ersatz einer Hydroxygruppe durch Alkylreste oder Wasserstoff Carbonsäuren, der Ersatz zweier Hydroxygruppen durch Alkylgruppen oder Wasserstoff die Aldehyde, Ketone.[11] Kolbe gebrauchte auch das Wort Synthese im Zusammenhang mit der künstlichen Darstellung von organischen Naturstoffen. Chemiker konnten bald durch eigene Forschungen neue organische Moleküle synthetisieren.

In Analogie zu positiv und negativ geladenen Ionen in der anorganischen Chemie vermutete Berzelius sogenannte Radikale in der organischen Chemie; darauf basierte seine Radikaltheorie. Ein Radikalteil des organischen Moleküls sollte eine positive, der andere Teil eine negative Ladung besitzen. Einige Jahre später untersuchten Jean Baptiste Dumas, Auguste Laurent, Charles Gerhardt und Justus von Liebig die Substitution bei organischen Verbindungen. Die Wasserstoffatome in organischen Verbindungen wurden durch Halogenatome ersetzt. Die alte Radikaltheorie von Berzelius, nach der sich positiv und negativ geladene Radikalteile in organischen Molekülen zusammenlagern, musste verworfen werden. In der Folge wurde von August Wilhelm von Hofmann, Hermann Kolbe, Edward Frankland, Stanislao Cannizzaro weitere Grundlagen über die Zusammensetzung von organischen Stoffen gefunden. 1857 veröffentlichte Friedrich August Kekulé seine Arbeit „Über die s. g. gepaarten Verbindungen und die Theorie der mehratomigen Radikale“ in Liebigs Annalen der Chemie (Bd. 104, Nr. 2, S. 129 ff.), die als Ausgangspunkt der organischen Strukturchemie gesehen wird. In dieser Arbeit wird der Kohlenstoff erstmals als vierwertig beschrieben.

Adolf von Baeyer, Emil Fischer, August Wilhelm von Hofmann erforschten Synthesen von Farbstoffen, Zuckern, Peptiden und Alkaloiden.

Ein Großteil der Arbeitszeit der früheren Chemiker lag in der Isolierung eines Reinstoffes.

Der Prüfung der Stoffidentität von organischen Stoffen erfolgte über Siedepunkt, Schmelzpunkt, Löslichkeit, Dichte, Geruch, Farbe, Brechungsindex.

Besonders wichtig wurde der Rohstoff Kohle für die organische Chemie. Ihren Aufschwung nahm die organische Chemie mit der Untersuchung der bei der Leuchtgaserzeugung entstehenden Abfallprodukte, als der deutsche Chemiker Friedlieb Ferdinand Runge (1795–1867) im Steinkohlenteer die Stoffe Phenol und Anilin entdeckt hatte. William Henry Perkin – ein Schüler August Wilhelm von Hofmann – entdeckte im Jahr 1856 den ersten synthetischen Farbstoff – das Mauvein. Von Hofmann und Emanuel Verguin führten das Fuchsin in die Färberei ein. Johann Peter Grieß entdeckte die Diazofarbstoffe. Die organische Chemie gewann nun zunehmende wirtschaftliche Bedeutung.
Grundlagen der organischen Synthese in Schule und Studium

Die organische Chemie ist ein Teilbereich der Wissenschaft (Lehrbücher, Studium), deren Grundlagen im 19. Jahrhundert nur für eine kleine Schicht der Bevölkerung zugänglich war. Durch die Bildungsreformen im 20. Jahrhundert erhalten fast alle Schüler eine Wissensgrundlage in organischer Chemie. Der Chemieunterricht ermöglicht dem Schüler die Teilhabe an kultureller Bildung, fördert das Verständnis für die Einordnung und Zusammenhänge bei Fragen, die chemisch relevant sind. Politiker, Juristen, Betriebswirte, Informatiker, Maschinenbauer benötigen in unserer Kultur Basiskenntnisse in organischer Chemie, um Zusammenhänge besser einordnen zu können.

Das geistige Vermögen der forschenden Chemiker und der Chemiker in der chemischen Industrie sorgten in den Industrieländern für ein großes Vermögen mit dauerhaft hohen Zinserträgen. Durch Auslandsinvestitionen und der Vernetzung mit Rohstoffanbietern konnte das gesellschaftliche Vermögen noch gesteigert werden.

Als Grundlage in der Naturwissenschaft dient das Experiment. Ein Experiment muss jedoch vor seiner Ausführung gut durchdacht sein. Der Chemiker prüft in der chemischen Fachliteratur, ob ein ähnliches Experiment von anderen Chemikern bereits unternommen wurde, damit überflüssige Arbeit vermieden wird. Für ein Experiment sollten in der Regel sehr reine Stoffe verwendet werden, um eindeutige Ergebnisse bei einem Experiment zu erhalten. Bei einer Stoffumsetzung kann es auch sehr entscheidend sein, ob Lösungsmittel, die sich bei einer Stoffumsetzung chemisch nicht verändern, zugesetzt werden oder nicht. Der Zusatz von anderen Lösungsmitteln kann zu geänderten Stoffumsetzungen führen.

Weiteres zu diesen Thema im Link:

https://de.wikipedia.org/wiki/Organische_Chemie
avatar
checker
Moderator
Moderator

Anzahl der Beiträge : 32384
Anmeldedatum : 03.04.11
Ort : Braunschweig

Benutzerprofil anzeigen

Nach oben Nach unten

Vorheriges Thema anzeigen Nächstes Thema anzeigen Nach oben

- Ähnliche Themen

 
Befugnisse in diesem Forum
Sie können in diesem Forum nicht antworten