Das Global Positioning System (GPS; deutsch Globales Positionsbestimmungssystem)
Seite 1 von 1
Das Global Positioning System (GPS; deutsch Globales Positionsbestimmungssystem)
Das Global Positioning System (GPS; deutsch Globales Positionsbestimmungssystem), offiziell NAVSTAR GPS, ist ein globales Navigationssatellitensystem zur Positionsbestimmung. Es wurde seit den 1970er-Jahren vom US-Verteidigungsministerium entwickelt und löste ab etwa 1985 das alte Satellitennavigationssystem NNSS (Transit) der US-Marine ab, ebenso die Vela-Satelliten zur Ortung von Kernwaffenexplosionen. GPS ist seit Mitte der 1990er-Jahre voll funktionsfähig und ermöglicht seit der Abschaltung der künstlichen Signalverschlechterung (Selective Availability) am 2. Mai 2000 auch zivilen Nutzern eine Genauigkeit von oft besser als 10 Metern. Die Genauigkeit lässt sich durch Differenzmethoden (Differential-GPS/DGPS) in der Umgebung eines Referenzempfängers auf Werte im Zentimeterbereich oder besser steigern. Mit den satellitengestützten Verbesserungssystemen (SBAS), die Korrekturdaten über geostationäre, in den Polargebieten nicht zu empfangende Satelliten verbreiten und ebenfalls zur Klasse der DGPS-Systeme gehören, werden kontinentweit Genauigkeiten von einem Meter erreicht. GPS hat sich als das weltweit wichtigste Ortungsverfahren etabliert und wird in Navigationssystemen weitverbreitet genutzt.
Bewegung der Satelliten über der Erde
Die offizielle Bezeichnung ist „Navigational Satellite Timing and Ranging – Global Positioning System“ (NAVSTAR GPS). NAVSTAR wird manchmal auch als Abkürzung für „Navigation System using Timing and Ranging“ genutzt. GPS wurde am 17. Juli 1995 offiziell in Betrieb genommen.
Die Abkürzung GPS ist inzwischen so sehr etabliert, dass sie umgangssprachlich, zum Teil sogar fachsprachlich, als generische Bezeichnung oder pars pro toto für alle Satellitennavigationssysteme benutzt wird.
Einsatzgebiete
GPS war ursprünglich zur Positionsbestimmung und Navigation im militärischen Bereich (in Waffensystemen, Kriegsschiffen, Flugzeugen usw.) vorgesehen. Ein Vorteil ist dabei, dass GPS-Geräte nur Signale empfangen und nicht senden. So kann navigiert werden, ohne dass der Feind Informationen über den eigenen Standort erhält. Heute wird es auch im zivilen Bereich genutzt: in der Seefahrt, Luftfahrt, durch Navigationssysteme im Auto, zur Positionsbestimmung und -verfolgung im Rettungs- und Feuerwehrdienst sowie im ÖPNV, zur Orientierung im Outdoor-Bereich etc. DGPS-Verfahren haben in Deutschland nach dem Aufbau des Satellitenpositionierungsdienstes der deutschen Landesvermessung (SAPOS) besondere Bedeutung in der Geodäsie, da sich damit landesweit Vermessungen in cm-Genauigkeit durchführen lassen. In der Landwirtschaft wird es beim Precision Farming zur Positionsbestimmung der Maschinen auf dem Acker genutzt. Ebenso wird GPS nun auch im Leistungssport verwendet. Speziell für den Einsatz in Mobiltelefonen wurde das Assisted Global Positioning System (A-GPS) entwickelt.
Aufbau und Funktionsweise der Ortungsfunktion
Stationäre GPS-Empfangsantenne für zeitkritische wissenschaftliche Messungen
Das Prinzip der GPS-Satellitenortung beschreibt der Artikel Globales Navigationssatellitensystem.
GPS basiert auf Satelliten, die mit codierten Radiosignalen ständig ihre aktuelle Position und die genaue Uhrzeit ausstrahlen. Aus den Signallaufzeiten können spezielle GPS-Empfänger dann ihre eigene Position und Geschwindigkeit berechnen. Theoretisch reichen dazu die Signale von drei Satelliten aus, welche sich oberhalb ihres Abschaltwinkels befinden müssen, da daraus die genaue Position und Höhe bestimmt werden kann. In der Praxis haben aber GPS-Empfänger keine Uhr, die genau genug ist, um die Laufzeiten korrekt zu messen. Deshalb wird das Signal eines vierten Satelliten benötigt, mit dem dann auch die genaue Zeit im Empfänger bestimmt werden kann. Zur Mindestanzahl der benötigten Satelliten siehe Artikel GPS-Technik.
Mit den GPS-Signalen lässt sich aber nicht nur die Position, sondern auch die Geschwindigkeit des Empfängers bestimmen. Dieses erfolgt allgemein über Messung des Dopplereffektes oder die numerische Differenzierung des Ortes nach der Zeit. Die Bewegungsrichtung des Empfängers kann ebenfalls ermittelt werden und als künstlicher Kompass oder zur Ausrichtung von elektronischen Karten dienen. Die Kompass-Funktion beruht ebenfalls auf dem Dopplereffekt. Das bedeutet, dass es bei ruhendem Empfänger nicht möglich ist, eine genaue Kompassmessung durchzuführen. Setzt sich der Empfänger in Bewegung, steht eine Kompassmessung erst nach kurzer Verzögerung zur Verfügung. Neuere Navigationssysteme verwenden hauptsächlich Magnetometer zur Kompassmessung.
Damit ein GPS-Empfänger immer zu mindestens vier Satelliten Kontakt hat, werden insgesamt mindestens 24 Satelliten eingesetzt, die die Erde jeden Sterntag zweimal in einer mittleren Bahnhöhe von 20.200 km umkreisen. Jeweils mindestens vier Satelliten bewegen sich dabei auf jeweils einer der sechs Bahnebenen, die 55° gegen die Äquatorebene inkliniert (geneigt) sind und gegeneinander um jeweils 60° verdreht sind. Da die Erde gleichzeitig in einem Sterntag fast eine komplette Drehung um die eigene Achse vollführt, steht ein Satellit nur einmal täglich über demselben Punkt der Erde (genau: alle 23 Stunden 55 Minuten und 56,6 Sekunden).
Ein Satellit hat eine erwartete Lebensdauer von 7,5 Jahren, doch funktionieren die Satelliten häufig deutlich länger. Um Ausfälle problemlos zu verkraften, wurden daher bis zu 31 Satelliten in den Orbit gebracht, sodass man auch bei schlechten Bedingungen fünf oder mehr Satelliten verwenden kann. Derzeit benötigt man 60 Tage für das Austauschen eines Satelliten; aus Kostengründen versucht man, diesen Zeitraum auf zehn Tage zu senken, mit dem Ziel, die Satellitenanzahl auf 25 reduzieren zu können.[1]
Gesendete Daten
Das Datensignal mit einer Datenrate von 50 bit/s und einer Rahmenperiode von 30 s wird parallel mittels Spread-Spectrum-Verfahren auf zwei Frequenzen ausgesendet:
Auf der L1-Frequenz (1575,42 MHz) werden der C/A-Code („Coarse/Acquisition“) für die zivile Nutzung, und trennbar-überlagert dazu der nicht öffentlich bekannte P/Y-Code („Precision/encrypted“) für die militärische Nutzung eingesetzt. Das übertragene Datensignal ist bei beiden Codefolgen identisch und stellt die 1500 Bit lange Navigationsnachricht dar. Sie enthält alle wichtigen Informationen zum Satelliten, Datum, Identifikationsnummer, Korrekturen, Bahnen, aber auch den Zustand, und benötigt zur Übertragung eine halbe Minute. GPS-Empfänger speichern diese Daten normalerweise zwischen. Zur Initialisierung der Geräte werden des Weiteren auch die sogenannten Almanach-Daten übertragen, die die groben Bahndaten aller Satelliten enthalten und zur Übertragung über zwölf Minuten benötigen.
Die zweite Frequenz L2-Frequenz (1227,60 MHz) überträgt nur den P/Y-Code. Wahlweise kann auf der zweiten Frequenz auch der C/A-Code übertragen werden. Durch die Übertragung auf zwei Frequenzen können ionosphärische Effekte, die zur Erhöhung der Laufzeit führen, herausgerechnet werden, was die Genauigkeit steigert. Im Rahmen der GPS-Modernisierung wird seit 2005 (Satelliten des Typs IIR-M und IIF) zusätzlich ein neuer ziviler C-Code (L2C) mit optimierter Datenstruktur übertragen.
Momentan ist die dritte L5-Frequenz (1176,45 MHz) im Aufbau. Sie soll die Robustheit des Empfangs weiter verbessern und ist vor allem für die Luftfahrt und Rettungsdienst-Anwendungen vorgesehen. Seit 2010 werden die L5-fähigen IIF-Satelliten eingesetzt, seit dem 28. April 2014 enthalten die L5-Signale nutzbare Navigationsdaten und seit dem 31. Dezember 2014 werden diese täglich aktualisiert. L5 verwendet die gleiche modernisierte Datenstruktur wie das L2C-Signal.[2][3]
Jeder Satellit hat auch einen Empfänger für eine Datenverbindung im S-Band (1783,74 MHz zum Empfangen, 2227,5 MHz zum Senden).
C/A-Code
Der für die Modulation des Datensignals im zivilen Bereich eingesetzte C/A-Code ist eine pseudozufällige Codefolge mit einer Länge von 1023 Bits. Die Sendebits einer Codefolge werden bei „Spread Spectrum“-Modulationen als sogenannte „Chips“ bezeichnet und tragen keine Nutzdateninformation, sondern dienen nur zur Demodulation mittels Korrelation mit der Codefolge selbst. Diese 1023 Chips lange Folge hat eine Periodenlänge von 1 ms, und die Chips-Rate beträgt 1,023 Mcps. Die beiden Codegeneratoren für die Gold-Folge bestehen aus jeweils 10 Bit langen Schieberegistern und sind vergleichbar mit linear rückgekoppelten Schieberegistern, wenngleich sie für sich einzeln nicht die maximale Folge ergeben. Die beim C/A-Code eingesetzten Generatorpolynome G1 und G2 lauten:
G 1 = 1 + x 3 + x 10 {\displaystyle G_{1}=1+x^{3}+x^{10}} G_{1}=1+x^{3}+x^{10}
G 2 = 1 + x 2 + x 3 + x 6 + x 8 + x 9 + x 10 {\displaystyle G_{2}=1+x^{2}+x^{3}+x^{6}+x^{8}+x^{9}+x^{10}} G_{2}=1+x^{2}+x^{3}+x^{6}+x^{8}+x^{9}+x^{10}
Die endgültige Gold-Folge (C/A-Codefolge) wird durch eine Codephasenverschiebung zwischen den beiden Generatoren erreicht. Die Phasenverschiebung wird bei jedem GPS-Satelliten unterschiedlich gewählt, so dass die dabei entstehenden Sendefolgen (Chips-Signalfolgen) orthogonal zueinander stehen – damit ist ein unabhängiger Empfang der einzelnen Satellitensignale möglich, obwohl alle GPS-Satelliten auf den gleichen Nominalfrequenzen L1 und L2 senden (sogenanntes Codemultiplex, CDMA-Verfahren).
Im Gegensatz zu den pseudozufälligen Rauschfolgen aus linear rückgekoppelten Schieberegistern (LFSR) haben die zwar ebenfalls pseudozufälligen Rauschfolgen aus Gold-Codegeneratoren wesentlich bessere Eigenschaften der Kreuzkorrelation, wenn man die zugrundeliegenden Generatorpolynome entsprechend auswählt. Dies bedeutet, dass durch die Codephasenverschiebung eingestellten, unterschiedlichen Gold-Folgen mit gleichen Generatorpolynomen zueinander fast orthogonal im Coderaum stehen und sich damit kaum gegenseitig beeinflussen. Die beim C/A-Code eingesetzten LFSR-Generatorpolynome G1 und G2 erlauben maximal 1023 Codephasenverschiebungen, wovon ungefähr 25 % zueinander eine in der GPS-Anwendung hinreichend kleine Kreuzkorrelation für den CDMA-Empfang aufweisen. Damit können neben den maximal 32 GPS-Satelliten und deren Navigationssignale weitere rund 200 Satelliten zusätzlich Daten auf der gleichen Sendefrequenz zu den GPS-Empfängern übertragen – dieser Umstand wird beispielsweise im Rahmen von EGNOS zur Übermittlung von atmosphärischen Korrekturdaten, Wetterdaten und Daten für die zivile Luftfahrt ausgenutzt.
Da die Datenrate der damit übertragenen Nutzdaten 50 bit/s beträgt und ein Nutzdatenbit genau 20 ms lang ist, wird ein einzelnes Nutzdatenbit immer durch exakt 20-malige Wiederholung einer Gold-Folge übertragen.
Der zuschaltbare künstliche Fehler Selective Availability, der seit dem Jahr 2000 nicht mehr eingesetzt wird, wurde bei dem C/A-Code dadurch erreicht, dass die zeitliche Ausrichtung (Taktsignal) der Chips einer geringen zeitlichen Schwankung (Jitter) unterworfen wurde. Die regionale Störung von GPS-Signalen wird durch das US-Militär durch GPS-Jammer erreicht und macht damit GPS nicht in jedem Fall zu einem verlässlichen Orientierungsmittel, da nicht verlässlich feststellbar ist, ob und wie weit GPS-Signale von den tatsächlichen UTM/MGRS-Koordinaten abweichen.
P(Y)-Code
Eine US-Luftwaffensoldatin geht in einem Satellitenkontrollraum der Schriever Air Force Base in Colorado (USA) eine Checkliste zur Steuerung von GPS-Satelliten durch.
Der längere und meist militärisch verwendete P-Code verwendet als Codegenerator sogenannte JPL-Folgen. Er unterteilt sich in den öffentlich dokumentierten P-Code[4] und den zur Verschlüsselung auf der Funkschnittstelle eingesetzten und geheimen Y-Code, welcher bedarfsmäßig zu- bzw. abgeschaltet werden kann. Die Kombination daraus wird als P/Y-Code bezeichnet. Die Verschlüsselung mit dem Y-Code soll einen möglichst manipulationssicheren Betrieb (engl. Anti-Spoofing oder AS-Mode) ermöglichen. Seit 31. Januar 1994 ist der AS-Modus permanent aktiviert, und es wird nicht mehr der öffentlich bekannte P-Code direkt übertragen.
Der P-Code wird aus vier linearen Schieberegistern (LFSR) der Länge 10 gebildet. Zwei davon bilden den sogenannten X1-Code, die anderen beiden den X2-Code. Der X1-Code wird mit dem X2-Code so über XOR-Verknüpfungen kombiniert, dass insgesamt 37 verschiedene Phasenverschiebungen 27 verschiedene Wochensegmente des P-Codes ergeben. Die Längen sind bei diesem Code wesentlich höher als beim C/A-Code. So liefert der X1-Codegenerator eine Länge 15 345 000 Chips und X2 eine Codefolge, die exakt um 37 Chips länger ist. Die Dauer, bis sich der P-Code wiederholt, ergibt sich daraus zu 266 Tagen (38 Wochen). Der P/Y-Code wird mit einer Chiprate von 10,23 Mcps gesendet, das entspricht der zehnfachen Chiprate des C/A-Codes. Er benötigt daher ein breiteres Frequenzspektrum als der C/A-Code.
Zur Unterscheidung der einzelnen GPS-Satelliten im P/Y-Code wird die sehr lange Codefolge von rund 38 Wochen Dauer in einzelne Wochensegmente aufgeteilt. Jeder GPS-Satellit hat einen genau eine Woche lang dauernden Codeabschnitt zugewiesen, und am Anfang jeder Woche (Sonntag 00:00 Uhr) werden alle P-Codegeneratoren wieder auf den Startwert zurückgesetzt. Damit wiederholt sich pro GPS-Satellit der P/Y-Code einmal pro Woche. Die Bodenstationen benötigen fünf Wochensegmente des in Summe 38 Wochen langen P-Codes für Steueraufgaben, 32 Wochensegmente sind für die Unterscheidung der einzelnen GPS-Satelliten vorgesehen.
Der C/A-Code dient dabei auch zur Umschaltung – sogenanntes Hand Over – auf den P/Y-Code. Da die P-Codefolge pro GPS-Satellit eine Woche umfasst, wäre das direkte Synchronisieren einfacher Empfänger auf die P-Codefolge ohne Kenntnis der genauen GPS-Uhrzeit praktisch unmöglich. Einfache GPS-Empfänger, die den P/Y-Code verwenden, synchronisieren sich zuerst auf den C/A-Code, gewinnen aus den übertragenen Daten die notwendige Umschaltinformationen wie Uhrzeit, Wochentag und andere Informationen, stellen damit ihre P-Codegeneratoren entsprechend ein und schalten dann auf den Empfang des P/Y-Code um.
Moderne militärische GPS-Empfänger werden heute mit einer sehr viel größeren Anzahl von Korrelatoren ausgestattet, ähnlich wie der im zivilen Bereich eingesetzte SiRFstar-III-Chipsatz, wodurch es möglich ist, den P/Y-Code direkt auszuwerten. Diese Empfänger werden bei den Herstellern als „direct-Y-code“-Empfänger bezeichnet. Diese Empfängergeneration macht es möglich, den C/A-Code zu stören, um die Nutzung von zivilen GPS-Empfängern durch gegnerische Kräfte beispielsweise zum Vermessen von Feuerstellungen zu verhindern. Da die Bandbreite des militärischen Signals ca. 20 MHz ist, können die 1-2 MHz Bandbreite des C/A-Codes, die zivil genutzt werden, gestört werden, ohne dass militärische Empfänger wesentlich beeinträchtigt werden. Das und die Annahme, dass heutige Konflikte regional begrenzt sind, führten zur Entscheidung, die künstliche Verschlechterung abzuschalten.
Die genauen Parameter für die Y-Verschlüsselung des P-Codes sind nicht öffentlich bekannt. Die Parameter der Navigationsdaten (Nutzdaten, Rahmenaufbau, Bitrate), die mittels P/Y-Code übertragen werden, sind allerdings exakt identisch mit den Daten, die mittels der öffentlich bekannten C/A-Codefolge übertragen werden. Der wesentliche Unterschied besteht darin, dass der Takt der P/Y-Codefolge im Satelliten grundsätzlich keinem künstlichen Taktfehler unterworfen wird und der P-Code auch die 10-fache Taktrate zum C/A-Code aufweist. Damit können P/Y-Empfänger die für die Positionsbestimmung wesentliche Information der Übertragungszeiten genauer gewinnen.
Es bestehen strikte Kontrollen bei der Weitergabe von P-Code-Daten an Länder außerhalb der NATO. Derartige Anwender wie die Luftwaffe der Schweiz erhalten den wöchentlich von der NSA gewechselten aktuellen P-Code und spielen diesen auf die Navigationshardware in ihren Kampfflugzeugen ein. Ohne dieses Update sinkt die Zielgenauigkeit der Bordwaffen drastisch. [5]
Ausbreitungseigenschaften des Signals
In den verwendeten Frequenzbereichen breitet sich die elektromagnetische Strahlung ähnlich wie sichtbares Licht fast geradlinig aus, wird dabei aber durch Bewölkung oder Niederschlag nur wenig beeinflusst. Dennoch ist auch wegen der geringen Sendeleistung der GPS-Satelliten für den besten Empfang der Signale eine direkte Sichtverbindung zum Satelliten erforderlich. In Gebäuden war ein GPS-Empfang bis vor kurzem nicht möglich. Neue Empfängertechnik ermöglicht jedoch nun unter günstigen Bedingungen auch Anwendungen in Gebäuden. Auch zwischen hohen Gebäuden kann es durch mehrfach reflektierte Signale (Mehrwege-Effekt) zu Ungenauigkeiten kommen. Zudem ergeben sich z. T. große Ungenauigkeiten bei ungünstigen Satellitenkonstellationen, zum Beispiel wenn nur drei nahe beieinander stehende Satelliten aus einer Richtung zur Positionsberechnung zur Verfügung stehen. Für eine exakte Positionsermittlung sollten möglichst vier Satellitensignale aus unterschiedlichen Himmelsrichtungen empfangbar sein.
Für die zentrale Kontrolle des GPS ist die 50th Space Wing des Air Force Space Command (AFSPC) der US Air Force auf der Schriever AFB, Colorado zuständig.
Die technische Realisierung einschließlich ihrer mathematischen Grundlagen wird im Artikel GPS-Technik beschrieben.
Weitere Aufgaben
Die GPS-Satelliten sind Teil des US-Programms Nuclear Detection System (NDS), früher Integrated Operational Nuclear Detection System (IONDS) genannt, eingebunden in das Verteidigungsprogramm DSP (Defense Support Program). Sie haben optische und Röntgen-Sensoren und ebenso Detektoren für EMP. Damit sollen sie Atombombenexplosionen und Starts von Interkontinentalraketen mit einer Ortsauflösung von 100 m registrieren.[6] Das GPS hat dabei das Vela-System abgelöst.
Eine weitere Aufgabe des GPS Systems besteht in der Bereitstellung eines einheitlichen Zeitsystems. Die von einem GPS-Empfänger empfangene Zeit ist zunächst die GPS-Zeit. In der Satellitennachricht ist aber auch die Abweichung zwischen GPS-Zeit und Koordinierter Weltzeit (UTC) angegeben. Mit der Genauigkeit der GPS-Zeit und der Angabe der Abweichung garantiert das System eine Abweichung von UTC von maximal einer Mikrosekunde, wenn die Laufzeit auch so genau bestimmt wird.
Geschichte
Die Idee des satellitenbasiertes Ortungssystem GPS ist schon ca. 70 Jahre alt und hat eine „wahnsinnige“ Vorgeschichte. [7] Im Jahr 1939 meldete in Berlin der deutsche Ingenieur Karl Hans Janke ein Patent für ein „Standortanzeiger, insbesondere für Luftfahrzeuge“ an. Das Patent wurde am 11. November 1943 erteilt und war dem GPS damals schon sehr ähnlich. Allerdings war die Zeit noch nicht reif für die Erfindung. Wegen zunehmender „chronisch paranoider Schizophrenie“ wurde der Wissenschaftler Janke, der auch viele andere Erfindungen hervorbracht hatte, 1949 wegen „wahnhaften Erfindens“ in eine Nervenheilanstalt eingewiesen, wo er bis zu seinem Tod 1988 verblieb.[8]
Neben bodengestützten Funknavigationssystemen wie dem während des Zweiten Weltkriegs entwickelten Decca Navigation System, welches später vor allem der Seeschifffahrtsnavigation diente und prinzipbedingt nur lokal verfügbar war, wurde ab 1958 von der US-Marine das erste Satellitennavigationssystem Transit entwickelt. Zunächst unter der Bezeichnung Navy Navigation Satellite System (NNSS) wurde es ab 1964 militärisch zur Zielführung ballistischer Raketen auf U-Booten und Flugzeugträgern der US-Marine und ab 1967 auch zivil genutzt und ist seit dem 31. Dezember 1996 außer Betrieb. Seine Sendefrequenzen lagen bei 150 und 400 MHz, und es erreichte eine Genauigkeit zwischen 500 und 15 m. Bradford W. Parkinson gilt als Miterfinder des militärisch genutzten Global Positioning System. Gemeinsam mit den US-Amerikanern Roger L. Easton und Ivan A. Getting, die für die zivile Nutzung von GPS vorrangig als Erfinder zu nennen sind, entwickelten sie GPS.
Das GPS-Programm wurde mit der Gründung des JPO (Joint Program Office) im Jahre 1973 gestartet.[9] Der erste GPS-Satellit wurde 1978[10] vom Vandenberg-Startplatz SLC-3E mit einer Atlas F Rakete in eine Umlaufbahn in 20.200 km Höhe und 63° Bahnneigung geschossen. 1985 startete der letzte Satellit dieser Generation mit einer Atlas E Rakete von der Vandenberg-Startrampe SLC-3W.[11] Mit Einführung der GPS-II-Serie (1989) wechselte man nach Cape Canaveral und startete von der Startrampe LC-17 mit Delta-6925-Raketen. Die Serien GPS IIA bis GPS IIR-M folgten mit Delta-7925-Raketen. Die Inklination wurde bei Starts von Cape Canaveral unter Beibehaltung der Bahnhöhe auf 55° verringert.[12] Im Dezember 1993 wurde die anfängliche Funktionsbereitschaft (Initial Operational Capability) festgestellt. Zu diesem Zeitpunkt waren 24 Satelliten im Einsatz. Die volle Funktionsbereitschaft (Full Operational Capability) wurde im April 1995 erreicht und am 17. Juli 1995 bekanntgegeben. Die GPS-IIF-Serie, deren erster Satellit GPS IIF-1 2010 startete, besitzt keinen Feststoff-Apogäumsmotor mehr, sondern wird von ihren Delta-IV- oder Atlas-V-Trägerraketen direkt im GPS-Orbit ausgesetzt statt auf einer Transferbahn, wie es bis zu GPS-IIR-M-Serie üblich war.[13]
Um nicht-autorisierte Benutzer – potenzielle militärische Gegner – von einer genauen Positionsbestimmung auszuschließen, wurde die Genauigkeit für Benutzer, die keinen Schlüssel haben, künstlich verschlechtert (selective availability = SA, mit einem Fehler von größer 100 m). SA musste in den Block-II-Satelliten implementiert werden, weil der C/A-Dienst deutlich besser als ursprünglich erwartet war. Es gab aber fast immer vereinzelte Satelliten, bei welchen SA nicht aktiviert war, sodass genaue Zeitübertragungen möglich waren.
Am 2. Mai 2000 wurde diese künstliche Ungenauigkeit der Satelliten abgeschaltet, ab ca. 4:05 Uhr UTC sendeten alle Satelliten ein SA-freies Signal.[14] Seitdem kann das System auch außerhalb des bisherigen exklusiven Anwendungsbereichs zur präzisen Positionsbestimmung genutzt werden. Dies führte unter anderem zum Aufschwung der Navigationssysteme in Fahrzeugen und im Außenbereich, da der Messfehler nun in mindestens 90 % der Messungen geringer als 10 m ist.
Am 25. September 2005 brachte eine Delta-II-Rakete den ersten GPS-Satelliten der Baureihe GPS 2R-M (modernized) in den Weltraum. Die Antenne wurde verbessert und das Sendespektrum um eine zweite zivile Frequenz und zwei neue militärische Signale erweitert. Seit Dezember 2005 im Einsatz, erweiterte der neue Satellit die Flotte der funktionstüchtigen Satelliten auf 28. Im Juni 2008 waren 32 Satelliten aktiv. Am 17. August 2009 startete mit GPS 2R-M8 der letzte GPS-Satellit dieser Serie mit einer Delta-II-Rakete erfolgreich in seine Transferbahn.
Am 28. Mai 2010 setzte eine Delta IV Medium+ (4,2) den ersten GPS-IIF-Satelliten im GPS-Orbit ab. Diese Serie ist weiter verbessert (u. a. genauere Atomuhren).[15]
Das Pentagon autorisierte die United States Air Force am 9. Mai 2008, die ersten acht Satelliten der dritten Baureihe zu bestellen. Für Entwicklung und Bau wurden 2 Mrd. US-Dollar bereitgestellt. Die dritte Generation wird aus insgesamt 32 Satelliten bestehen und soll ab 2014 das GPS-II-System ersetzen. Sie unterscheiden sich durch eine erhöhte Signalstärke und weitere Maßnahmen, um eine Störung der Signale zu erschweren. Lockheed Martin und Boeing konkurrierten um den Auftrag, mit dem automatisch auch die Lieferung der nachfolgenden 24 Satelliten verbunden sein sollte.[16] Am 15. Mai 2008 gewann Lockheed-Martin den Auftrag zum Bau der ersten zwei GPS-IIIA-Satelliten.[17] Inzwischen soll der Auftrag auf acht Satelliten aufgestockt worden sein.[18]
Weiteres dazu im Link:
https://de.wikipedia.org/wiki/Global_Positioning_System
Bewegung der Satelliten über der Erde
Die offizielle Bezeichnung ist „Navigational Satellite Timing and Ranging – Global Positioning System“ (NAVSTAR GPS). NAVSTAR wird manchmal auch als Abkürzung für „Navigation System using Timing and Ranging“ genutzt. GPS wurde am 17. Juli 1995 offiziell in Betrieb genommen.
Die Abkürzung GPS ist inzwischen so sehr etabliert, dass sie umgangssprachlich, zum Teil sogar fachsprachlich, als generische Bezeichnung oder pars pro toto für alle Satellitennavigationssysteme benutzt wird.
Einsatzgebiete
GPS war ursprünglich zur Positionsbestimmung und Navigation im militärischen Bereich (in Waffensystemen, Kriegsschiffen, Flugzeugen usw.) vorgesehen. Ein Vorteil ist dabei, dass GPS-Geräte nur Signale empfangen und nicht senden. So kann navigiert werden, ohne dass der Feind Informationen über den eigenen Standort erhält. Heute wird es auch im zivilen Bereich genutzt: in der Seefahrt, Luftfahrt, durch Navigationssysteme im Auto, zur Positionsbestimmung und -verfolgung im Rettungs- und Feuerwehrdienst sowie im ÖPNV, zur Orientierung im Outdoor-Bereich etc. DGPS-Verfahren haben in Deutschland nach dem Aufbau des Satellitenpositionierungsdienstes der deutschen Landesvermessung (SAPOS) besondere Bedeutung in der Geodäsie, da sich damit landesweit Vermessungen in cm-Genauigkeit durchführen lassen. In der Landwirtschaft wird es beim Precision Farming zur Positionsbestimmung der Maschinen auf dem Acker genutzt. Ebenso wird GPS nun auch im Leistungssport verwendet. Speziell für den Einsatz in Mobiltelefonen wurde das Assisted Global Positioning System (A-GPS) entwickelt.
Aufbau und Funktionsweise der Ortungsfunktion
Stationäre GPS-Empfangsantenne für zeitkritische wissenschaftliche Messungen
Das Prinzip der GPS-Satellitenortung beschreibt der Artikel Globales Navigationssatellitensystem.
GPS basiert auf Satelliten, die mit codierten Radiosignalen ständig ihre aktuelle Position und die genaue Uhrzeit ausstrahlen. Aus den Signallaufzeiten können spezielle GPS-Empfänger dann ihre eigene Position und Geschwindigkeit berechnen. Theoretisch reichen dazu die Signale von drei Satelliten aus, welche sich oberhalb ihres Abschaltwinkels befinden müssen, da daraus die genaue Position und Höhe bestimmt werden kann. In der Praxis haben aber GPS-Empfänger keine Uhr, die genau genug ist, um die Laufzeiten korrekt zu messen. Deshalb wird das Signal eines vierten Satelliten benötigt, mit dem dann auch die genaue Zeit im Empfänger bestimmt werden kann. Zur Mindestanzahl der benötigten Satelliten siehe Artikel GPS-Technik.
Mit den GPS-Signalen lässt sich aber nicht nur die Position, sondern auch die Geschwindigkeit des Empfängers bestimmen. Dieses erfolgt allgemein über Messung des Dopplereffektes oder die numerische Differenzierung des Ortes nach der Zeit. Die Bewegungsrichtung des Empfängers kann ebenfalls ermittelt werden und als künstlicher Kompass oder zur Ausrichtung von elektronischen Karten dienen. Die Kompass-Funktion beruht ebenfalls auf dem Dopplereffekt. Das bedeutet, dass es bei ruhendem Empfänger nicht möglich ist, eine genaue Kompassmessung durchzuführen. Setzt sich der Empfänger in Bewegung, steht eine Kompassmessung erst nach kurzer Verzögerung zur Verfügung. Neuere Navigationssysteme verwenden hauptsächlich Magnetometer zur Kompassmessung.
Damit ein GPS-Empfänger immer zu mindestens vier Satelliten Kontakt hat, werden insgesamt mindestens 24 Satelliten eingesetzt, die die Erde jeden Sterntag zweimal in einer mittleren Bahnhöhe von 20.200 km umkreisen. Jeweils mindestens vier Satelliten bewegen sich dabei auf jeweils einer der sechs Bahnebenen, die 55° gegen die Äquatorebene inkliniert (geneigt) sind und gegeneinander um jeweils 60° verdreht sind. Da die Erde gleichzeitig in einem Sterntag fast eine komplette Drehung um die eigene Achse vollführt, steht ein Satellit nur einmal täglich über demselben Punkt der Erde (genau: alle 23 Stunden 55 Minuten und 56,6 Sekunden).
Ein Satellit hat eine erwartete Lebensdauer von 7,5 Jahren, doch funktionieren die Satelliten häufig deutlich länger. Um Ausfälle problemlos zu verkraften, wurden daher bis zu 31 Satelliten in den Orbit gebracht, sodass man auch bei schlechten Bedingungen fünf oder mehr Satelliten verwenden kann. Derzeit benötigt man 60 Tage für das Austauschen eines Satelliten; aus Kostengründen versucht man, diesen Zeitraum auf zehn Tage zu senken, mit dem Ziel, die Satellitenanzahl auf 25 reduzieren zu können.[1]
Gesendete Daten
Das Datensignal mit einer Datenrate von 50 bit/s und einer Rahmenperiode von 30 s wird parallel mittels Spread-Spectrum-Verfahren auf zwei Frequenzen ausgesendet:
Auf der L1-Frequenz (1575,42 MHz) werden der C/A-Code („Coarse/Acquisition“) für die zivile Nutzung, und trennbar-überlagert dazu der nicht öffentlich bekannte P/Y-Code („Precision/encrypted“) für die militärische Nutzung eingesetzt. Das übertragene Datensignal ist bei beiden Codefolgen identisch und stellt die 1500 Bit lange Navigationsnachricht dar. Sie enthält alle wichtigen Informationen zum Satelliten, Datum, Identifikationsnummer, Korrekturen, Bahnen, aber auch den Zustand, und benötigt zur Übertragung eine halbe Minute. GPS-Empfänger speichern diese Daten normalerweise zwischen. Zur Initialisierung der Geräte werden des Weiteren auch die sogenannten Almanach-Daten übertragen, die die groben Bahndaten aller Satelliten enthalten und zur Übertragung über zwölf Minuten benötigen.
Die zweite Frequenz L2-Frequenz (1227,60 MHz) überträgt nur den P/Y-Code. Wahlweise kann auf der zweiten Frequenz auch der C/A-Code übertragen werden. Durch die Übertragung auf zwei Frequenzen können ionosphärische Effekte, die zur Erhöhung der Laufzeit führen, herausgerechnet werden, was die Genauigkeit steigert. Im Rahmen der GPS-Modernisierung wird seit 2005 (Satelliten des Typs IIR-M und IIF) zusätzlich ein neuer ziviler C-Code (L2C) mit optimierter Datenstruktur übertragen.
Momentan ist die dritte L5-Frequenz (1176,45 MHz) im Aufbau. Sie soll die Robustheit des Empfangs weiter verbessern und ist vor allem für die Luftfahrt und Rettungsdienst-Anwendungen vorgesehen. Seit 2010 werden die L5-fähigen IIF-Satelliten eingesetzt, seit dem 28. April 2014 enthalten die L5-Signale nutzbare Navigationsdaten und seit dem 31. Dezember 2014 werden diese täglich aktualisiert. L5 verwendet die gleiche modernisierte Datenstruktur wie das L2C-Signal.[2][3]
Jeder Satellit hat auch einen Empfänger für eine Datenverbindung im S-Band (1783,74 MHz zum Empfangen, 2227,5 MHz zum Senden).
C/A-Code
Der für die Modulation des Datensignals im zivilen Bereich eingesetzte C/A-Code ist eine pseudozufällige Codefolge mit einer Länge von 1023 Bits. Die Sendebits einer Codefolge werden bei „Spread Spectrum“-Modulationen als sogenannte „Chips“ bezeichnet und tragen keine Nutzdateninformation, sondern dienen nur zur Demodulation mittels Korrelation mit der Codefolge selbst. Diese 1023 Chips lange Folge hat eine Periodenlänge von 1 ms, und die Chips-Rate beträgt 1,023 Mcps. Die beiden Codegeneratoren für die Gold-Folge bestehen aus jeweils 10 Bit langen Schieberegistern und sind vergleichbar mit linear rückgekoppelten Schieberegistern, wenngleich sie für sich einzeln nicht die maximale Folge ergeben. Die beim C/A-Code eingesetzten Generatorpolynome G1 und G2 lauten:
G 1 = 1 + x 3 + x 10 {\displaystyle G_{1}=1+x^{3}+x^{10}} G_{1}=1+x^{3}+x^{10}
G 2 = 1 + x 2 + x 3 + x 6 + x 8 + x 9 + x 10 {\displaystyle G_{2}=1+x^{2}+x^{3}+x^{6}+x^{8}+x^{9}+x^{10}} G_{2}=1+x^{2}+x^{3}+x^{6}+x^{8}+x^{9}+x^{10}
Die endgültige Gold-Folge (C/A-Codefolge) wird durch eine Codephasenverschiebung zwischen den beiden Generatoren erreicht. Die Phasenverschiebung wird bei jedem GPS-Satelliten unterschiedlich gewählt, so dass die dabei entstehenden Sendefolgen (Chips-Signalfolgen) orthogonal zueinander stehen – damit ist ein unabhängiger Empfang der einzelnen Satellitensignale möglich, obwohl alle GPS-Satelliten auf den gleichen Nominalfrequenzen L1 und L2 senden (sogenanntes Codemultiplex, CDMA-Verfahren).
Im Gegensatz zu den pseudozufälligen Rauschfolgen aus linear rückgekoppelten Schieberegistern (LFSR) haben die zwar ebenfalls pseudozufälligen Rauschfolgen aus Gold-Codegeneratoren wesentlich bessere Eigenschaften der Kreuzkorrelation, wenn man die zugrundeliegenden Generatorpolynome entsprechend auswählt. Dies bedeutet, dass durch die Codephasenverschiebung eingestellten, unterschiedlichen Gold-Folgen mit gleichen Generatorpolynomen zueinander fast orthogonal im Coderaum stehen und sich damit kaum gegenseitig beeinflussen. Die beim C/A-Code eingesetzten LFSR-Generatorpolynome G1 und G2 erlauben maximal 1023 Codephasenverschiebungen, wovon ungefähr 25 % zueinander eine in der GPS-Anwendung hinreichend kleine Kreuzkorrelation für den CDMA-Empfang aufweisen. Damit können neben den maximal 32 GPS-Satelliten und deren Navigationssignale weitere rund 200 Satelliten zusätzlich Daten auf der gleichen Sendefrequenz zu den GPS-Empfängern übertragen – dieser Umstand wird beispielsweise im Rahmen von EGNOS zur Übermittlung von atmosphärischen Korrekturdaten, Wetterdaten und Daten für die zivile Luftfahrt ausgenutzt.
Da die Datenrate der damit übertragenen Nutzdaten 50 bit/s beträgt und ein Nutzdatenbit genau 20 ms lang ist, wird ein einzelnes Nutzdatenbit immer durch exakt 20-malige Wiederholung einer Gold-Folge übertragen.
Der zuschaltbare künstliche Fehler Selective Availability, der seit dem Jahr 2000 nicht mehr eingesetzt wird, wurde bei dem C/A-Code dadurch erreicht, dass die zeitliche Ausrichtung (Taktsignal) der Chips einer geringen zeitlichen Schwankung (Jitter) unterworfen wurde. Die regionale Störung von GPS-Signalen wird durch das US-Militär durch GPS-Jammer erreicht und macht damit GPS nicht in jedem Fall zu einem verlässlichen Orientierungsmittel, da nicht verlässlich feststellbar ist, ob und wie weit GPS-Signale von den tatsächlichen UTM/MGRS-Koordinaten abweichen.
P(Y)-Code
Eine US-Luftwaffensoldatin geht in einem Satellitenkontrollraum der Schriever Air Force Base in Colorado (USA) eine Checkliste zur Steuerung von GPS-Satelliten durch.
Der längere und meist militärisch verwendete P-Code verwendet als Codegenerator sogenannte JPL-Folgen. Er unterteilt sich in den öffentlich dokumentierten P-Code[4] und den zur Verschlüsselung auf der Funkschnittstelle eingesetzten und geheimen Y-Code, welcher bedarfsmäßig zu- bzw. abgeschaltet werden kann. Die Kombination daraus wird als P/Y-Code bezeichnet. Die Verschlüsselung mit dem Y-Code soll einen möglichst manipulationssicheren Betrieb (engl. Anti-Spoofing oder AS-Mode) ermöglichen. Seit 31. Januar 1994 ist der AS-Modus permanent aktiviert, und es wird nicht mehr der öffentlich bekannte P-Code direkt übertragen.
Der P-Code wird aus vier linearen Schieberegistern (LFSR) der Länge 10 gebildet. Zwei davon bilden den sogenannten X1-Code, die anderen beiden den X2-Code. Der X1-Code wird mit dem X2-Code so über XOR-Verknüpfungen kombiniert, dass insgesamt 37 verschiedene Phasenverschiebungen 27 verschiedene Wochensegmente des P-Codes ergeben. Die Längen sind bei diesem Code wesentlich höher als beim C/A-Code. So liefert der X1-Codegenerator eine Länge 15 345 000 Chips und X2 eine Codefolge, die exakt um 37 Chips länger ist. Die Dauer, bis sich der P-Code wiederholt, ergibt sich daraus zu 266 Tagen (38 Wochen). Der P/Y-Code wird mit einer Chiprate von 10,23 Mcps gesendet, das entspricht der zehnfachen Chiprate des C/A-Codes. Er benötigt daher ein breiteres Frequenzspektrum als der C/A-Code.
Zur Unterscheidung der einzelnen GPS-Satelliten im P/Y-Code wird die sehr lange Codefolge von rund 38 Wochen Dauer in einzelne Wochensegmente aufgeteilt. Jeder GPS-Satellit hat einen genau eine Woche lang dauernden Codeabschnitt zugewiesen, und am Anfang jeder Woche (Sonntag 00:00 Uhr) werden alle P-Codegeneratoren wieder auf den Startwert zurückgesetzt. Damit wiederholt sich pro GPS-Satellit der P/Y-Code einmal pro Woche. Die Bodenstationen benötigen fünf Wochensegmente des in Summe 38 Wochen langen P-Codes für Steueraufgaben, 32 Wochensegmente sind für die Unterscheidung der einzelnen GPS-Satelliten vorgesehen.
Der C/A-Code dient dabei auch zur Umschaltung – sogenanntes Hand Over – auf den P/Y-Code. Da die P-Codefolge pro GPS-Satellit eine Woche umfasst, wäre das direkte Synchronisieren einfacher Empfänger auf die P-Codefolge ohne Kenntnis der genauen GPS-Uhrzeit praktisch unmöglich. Einfache GPS-Empfänger, die den P/Y-Code verwenden, synchronisieren sich zuerst auf den C/A-Code, gewinnen aus den übertragenen Daten die notwendige Umschaltinformationen wie Uhrzeit, Wochentag und andere Informationen, stellen damit ihre P-Codegeneratoren entsprechend ein und schalten dann auf den Empfang des P/Y-Code um.
Moderne militärische GPS-Empfänger werden heute mit einer sehr viel größeren Anzahl von Korrelatoren ausgestattet, ähnlich wie der im zivilen Bereich eingesetzte SiRFstar-III-Chipsatz, wodurch es möglich ist, den P/Y-Code direkt auszuwerten. Diese Empfänger werden bei den Herstellern als „direct-Y-code“-Empfänger bezeichnet. Diese Empfängergeneration macht es möglich, den C/A-Code zu stören, um die Nutzung von zivilen GPS-Empfängern durch gegnerische Kräfte beispielsweise zum Vermessen von Feuerstellungen zu verhindern. Da die Bandbreite des militärischen Signals ca. 20 MHz ist, können die 1-2 MHz Bandbreite des C/A-Codes, die zivil genutzt werden, gestört werden, ohne dass militärische Empfänger wesentlich beeinträchtigt werden. Das und die Annahme, dass heutige Konflikte regional begrenzt sind, führten zur Entscheidung, die künstliche Verschlechterung abzuschalten.
Die genauen Parameter für die Y-Verschlüsselung des P-Codes sind nicht öffentlich bekannt. Die Parameter der Navigationsdaten (Nutzdaten, Rahmenaufbau, Bitrate), die mittels P/Y-Code übertragen werden, sind allerdings exakt identisch mit den Daten, die mittels der öffentlich bekannten C/A-Codefolge übertragen werden. Der wesentliche Unterschied besteht darin, dass der Takt der P/Y-Codefolge im Satelliten grundsätzlich keinem künstlichen Taktfehler unterworfen wird und der P-Code auch die 10-fache Taktrate zum C/A-Code aufweist. Damit können P/Y-Empfänger die für die Positionsbestimmung wesentliche Information der Übertragungszeiten genauer gewinnen.
Es bestehen strikte Kontrollen bei der Weitergabe von P-Code-Daten an Länder außerhalb der NATO. Derartige Anwender wie die Luftwaffe der Schweiz erhalten den wöchentlich von der NSA gewechselten aktuellen P-Code und spielen diesen auf die Navigationshardware in ihren Kampfflugzeugen ein. Ohne dieses Update sinkt die Zielgenauigkeit der Bordwaffen drastisch. [5]
Ausbreitungseigenschaften des Signals
In den verwendeten Frequenzbereichen breitet sich die elektromagnetische Strahlung ähnlich wie sichtbares Licht fast geradlinig aus, wird dabei aber durch Bewölkung oder Niederschlag nur wenig beeinflusst. Dennoch ist auch wegen der geringen Sendeleistung der GPS-Satelliten für den besten Empfang der Signale eine direkte Sichtverbindung zum Satelliten erforderlich. In Gebäuden war ein GPS-Empfang bis vor kurzem nicht möglich. Neue Empfängertechnik ermöglicht jedoch nun unter günstigen Bedingungen auch Anwendungen in Gebäuden. Auch zwischen hohen Gebäuden kann es durch mehrfach reflektierte Signale (Mehrwege-Effekt) zu Ungenauigkeiten kommen. Zudem ergeben sich z. T. große Ungenauigkeiten bei ungünstigen Satellitenkonstellationen, zum Beispiel wenn nur drei nahe beieinander stehende Satelliten aus einer Richtung zur Positionsberechnung zur Verfügung stehen. Für eine exakte Positionsermittlung sollten möglichst vier Satellitensignale aus unterschiedlichen Himmelsrichtungen empfangbar sein.
Für die zentrale Kontrolle des GPS ist die 50th Space Wing des Air Force Space Command (AFSPC) der US Air Force auf der Schriever AFB, Colorado zuständig.
Die technische Realisierung einschließlich ihrer mathematischen Grundlagen wird im Artikel GPS-Technik beschrieben.
Weitere Aufgaben
Die GPS-Satelliten sind Teil des US-Programms Nuclear Detection System (NDS), früher Integrated Operational Nuclear Detection System (IONDS) genannt, eingebunden in das Verteidigungsprogramm DSP (Defense Support Program). Sie haben optische und Röntgen-Sensoren und ebenso Detektoren für EMP. Damit sollen sie Atombombenexplosionen und Starts von Interkontinentalraketen mit einer Ortsauflösung von 100 m registrieren.[6] Das GPS hat dabei das Vela-System abgelöst.
Eine weitere Aufgabe des GPS Systems besteht in der Bereitstellung eines einheitlichen Zeitsystems. Die von einem GPS-Empfänger empfangene Zeit ist zunächst die GPS-Zeit. In der Satellitennachricht ist aber auch die Abweichung zwischen GPS-Zeit und Koordinierter Weltzeit (UTC) angegeben. Mit der Genauigkeit der GPS-Zeit und der Angabe der Abweichung garantiert das System eine Abweichung von UTC von maximal einer Mikrosekunde, wenn die Laufzeit auch so genau bestimmt wird.
Geschichte
Die Idee des satellitenbasiertes Ortungssystem GPS ist schon ca. 70 Jahre alt und hat eine „wahnsinnige“ Vorgeschichte. [7] Im Jahr 1939 meldete in Berlin der deutsche Ingenieur Karl Hans Janke ein Patent für ein „Standortanzeiger, insbesondere für Luftfahrzeuge“ an. Das Patent wurde am 11. November 1943 erteilt und war dem GPS damals schon sehr ähnlich. Allerdings war die Zeit noch nicht reif für die Erfindung. Wegen zunehmender „chronisch paranoider Schizophrenie“ wurde der Wissenschaftler Janke, der auch viele andere Erfindungen hervorbracht hatte, 1949 wegen „wahnhaften Erfindens“ in eine Nervenheilanstalt eingewiesen, wo er bis zu seinem Tod 1988 verblieb.[8]
Neben bodengestützten Funknavigationssystemen wie dem während des Zweiten Weltkriegs entwickelten Decca Navigation System, welches später vor allem der Seeschifffahrtsnavigation diente und prinzipbedingt nur lokal verfügbar war, wurde ab 1958 von der US-Marine das erste Satellitennavigationssystem Transit entwickelt. Zunächst unter der Bezeichnung Navy Navigation Satellite System (NNSS) wurde es ab 1964 militärisch zur Zielführung ballistischer Raketen auf U-Booten und Flugzeugträgern der US-Marine und ab 1967 auch zivil genutzt und ist seit dem 31. Dezember 1996 außer Betrieb. Seine Sendefrequenzen lagen bei 150 und 400 MHz, und es erreichte eine Genauigkeit zwischen 500 und 15 m. Bradford W. Parkinson gilt als Miterfinder des militärisch genutzten Global Positioning System. Gemeinsam mit den US-Amerikanern Roger L. Easton und Ivan A. Getting, die für die zivile Nutzung von GPS vorrangig als Erfinder zu nennen sind, entwickelten sie GPS.
Das GPS-Programm wurde mit der Gründung des JPO (Joint Program Office) im Jahre 1973 gestartet.[9] Der erste GPS-Satellit wurde 1978[10] vom Vandenberg-Startplatz SLC-3E mit einer Atlas F Rakete in eine Umlaufbahn in 20.200 km Höhe und 63° Bahnneigung geschossen. 1985 startete der letzte Satellit dieser Generation mit einer Atlas E Rakete von der Vandenberg-Startrampe SLC-3W.[11] Mit Einführung der GPS-II-Serie (1989) wechselte man nach Cape Canaveral und startete von der Startrampe LC-17 mit Delta-6925-Raketen. Die Serien GPS IIA bis GPS IIR-M folgten mit Delta-7925-Raketen. Die Inklination wurde bei Starts von Cape Canaveral unter Beibehaltung der Bahnhöhe auf 55° verringert.[12] Im Dezember 1993 wurde die anfängliche Funktionsbereitschaft (Initial Operational Capability) festgestellt. Zu diesem Zeitpunkt waren 24 Satelliten im Einsatz. Die volle Funktionsbereitschaft (Full Operational Capability) wurde im April 1995 erreicht und am 17. Juli 1995 bekanntgegeben. Die GPS-IIF-Serie, deren erster Satellit GPS IIF-1 2010 startete, besitzt keinen Feststoff-Apogäumsmotor mehr, sondern wird von ihren Delta-IV- oder Atlas-V-Trägerraketen direkt im GPS-Orbit ausgesetzt statt auf einer Transferbahn, wie es bis zu GPS-IIR-M-Serie üblich war.[13]
Um nicht-autorisierte Benutzer – potenzielle militärische Gegner – von einer genauen Positionsbestimmung auszuschließen, wurde die Genauigkeit für Benutzer, die keinen Schlüssel haben, künstlich verschlechtert (selective availability = SA, mit einem Fehler von größer 100 m). SA musste in den Block-II-Satelliten implementiert werden, weil der C/A-Dienst deutlich besser als ursprünglich erwartet war. Es gab aber fast immer vereinzelte Satelliten, bei welchen SA nicht aktiviert war, sodass genaue Zeitübertragungen möglich waren.
Am 2. Mai 2000 wurde diese künstliche Ungenauigkeit der Satelliten abgeschaltet, ab ca. 4:05 Uhr UTC sendeten alle Satelliten ein SA-freies Signal.[14] Seitdem kann das System auch außerhalb des bisherigen exklusiven Anwendungsbereichs zur präzisen Positionsbestimmung genutzt werden. Dies führte unter anderem zum Aufschwung der Navigationssysteme in Fahrzeugen und im Außenbereich, da der Messfehler nun in mindestens 90 % der Messungen geringer als 10 m ist.
Am 25. September 2005 brachte eine Delta-II-Rakete den ersten GPS-Satelliten der Baureihe GPS 2R-M (modernized) in den Weltraum. Die Antenne wurde verbessert und das Sendespektrum um eine zweite zivile Frequenz und zwei neue militärische Signale erweitert. Seit Dezember 2005 im Einsatz, erweiterte der neue Satellit die Flotte der funktionstüchtigen Satelliten auf 28. Im Juni 2008 waren 32 Satelliten aktiv. Am 17. August 2009 startete mit GPS 2R-M8 der letzte GPS-Satellit dieser Serie mit einer Delta-II-Rakete erfolgreich in seine Transferbahn.
Am 28. Mai 2010 setzte eine Delta IV Medium+ (4,2) den ersten GPS-IIF-Satelliten im GPS-Orbit ab. Diese Serie ist weiter verbessert (u. a. genauere Atomuhren).[15]
Das Pentagon autorisierte die United States Air Force am 9. Mai 2008, die ersten acht Satelliten der dritten Baureihe zu bestellen. Für Entwicklung und Bau wurden 2 Mrd. US-Dollar bereitgestellt. Die dritte Generation wird aus insgesamt 32 Satelliten bestehen und soll ab 2014 das GPS-II-System ersetzen. Sie unterscheiden sich durch eine erhöhte Signalstärke und weitere Maßnahmen, um eine Störung der Signale zu erschweren. Lockheed Martin und Boeing konkurrierten um den Auftrag, mit dem automatisch auch die Lieferung der nachfolgenden 24 Satelliten verbunden sein sollte.[16] Am 15. Mai 2008 gewann Lockheed-Martin den Auftrag zum Bau der ersten zwei GPS-IIIA-Satelliten.[17] Inzwischen soll der Auftrag auf acht Satelliten aufgestockt worden sein.[18]
Weiteres dazu im Link:
https://de.wikipedia.org/wiki/Global_Positioning_System
Andy- Admin
- Anzahl der Beiträge : 36186
Anmeldedatum : 03.04.11
Ähnliche Themen
» Wie Funktioniert das System und Wer sind die Handlanger des Bösen ?! NWO Finazkrise Global
» Automobiles D.B., auch Deutsch & Bonnet und Deutsch et Bonnet genannt
» Die CNH Global
» Automobiles D.B., auch Deutsch & Bonnet und Deutsch et Bonnet genannt
» Die CNH Global
Seite 1 von 1
Befugnisse in diesem Forum
Sie können in diesem Forum nicht antworten
Heute um 3:20 am von Heiliger Hotze
» Halflives
Heute um 3:18 am von Heiliger Hotze
» Kupfergold
Heute um 3:15 am von Heiliger Hotze
» Whitesnake
Heute um 3:13 am von Heiliger Hotze
» ( ENGELSEIN ) ENGELHAI
Heute um 3:11 am von Heiliger Hotze
» MALIGNANT TUMOUR
Heute um 3:04 am von Heiliger Hotze
» - LEEAAV -
Heute um 3:02 am von Heiliger Hotze
» (( ifa ))
Heute um 3:00 am von Heiliger Hotze
» AOP Records
Heute um 2:57 am von Heiliger Hotze