Der Voltec-Antrieb
Seite 1 von 1
Der Voltec-Antrieb
Der Voltec-Antrieb ist ein alternatives Antriebskonzept des Autoherstellers General Motors, das im Jahr 2010 mit dem Chevrolet Volt auf den Markt kam und seit November 2011 auch im Opel Ampera zum Einsatz kommt.[1] Der Antrieb wurde unter Leitung des deutschen Ingenieurs Frank Weber entwickelt, der nach wechselnden Aktivitäten bei GM und Opel seit dem Jahr 2011 für BMW arbeitet.[2] In dem im Jahr 2007 vorgestellten Konzeptfahrzeug Chevrolet Volt wurde der Voltec-Antrieb noch E-Flex-Antrieb genannt. GM kündigte für Ende 2012 zwei weitere PKW-Modelle an, bei denen der Voltec-Antrieb zum Einsatz kommen sollte; sie wurden jedoch nicht hergestellt.[3] GM bezeichnet den Fahrzeugantrieb nicht als „Hybridantrieb“, sondern führte für die Fahrzeuge das Kürzel E-REV ein, was für „extended-range electric vehicle“ steht.[1][4] „Voltec“ wird verschiedentlich als ein Kofferwort aus den Begriffen Volt, „Vortec“ und Technology angesehen.
Motoren eines Chevrolet Volt bei einer öffentlichen Ausstellung in einer Metro-Station in Washington D.C., links der Verbrennungsmotor, rechts der Elektromotor
Prinzip
Das Motorsystem[1] besteht aus drei Arbeitsmaschinen/Kraftmaschinen:
einem Elektromotor als Hauptantrieb, der bei der Rekuperation auch als Generator arbeitet,
einem On-Board-Generator, der teilweise auch als Antriebsmotor eingesetzt wird, sowie
einem Benzinmotor, der hauptsächlich zum Antrieb des Generatormotors dient.
Über ein Planetengetriebe mit drei hydraulisch betätigten Motorkupplungen werden die drei Motoren auf unterschiedliche Weise gekoppelt. Der jeweils optimale Betriebsmodus wird je nach Betriebszustand vollautomatisch elektronisch gewählt. Die eingesetzten Motorkupplungen sind dabei immer entweder offen oder geschlossen. Eine "rutschende Kupplung", wie sie bei PKWs mit Handschaltgetriebe vom Fahrer für den Anfahrvorgang verwendet wird, gibt es beim Voltec-Antrieb in keinem der Fahrmodi, sondern nur sehr kurz beim Wechsel der Modi.
In erster Linie erfolgt der Antrieb des Fahrzeugs durch einen Elektromotor mit einer Spitzenleistung von 111 kW (151 PS).[5] Wenn die Akkus des Fahrzeugs weitgehend entladen sind, springt der nicht aufgeladene 1,4-Liter-4-Zylinder-Benzin-Motor mit einer Leistung von 63 kW (84 PS) an und speist den On-Board-Generator, der nun elektrischen Strom für den Hauptantrieb liefert.[6] Das Design wird als teilweise serieller Hybridantrieb bezeichnet, da der Verbrennungsmotor einen Generator mit Energie versorgt, der den Strom für den E-Motor erzeugt. Es ist ebenfalls ein teilweise paralleler Hybridantrieb, da der Benzinmotor bei hoher Leistungsanforderung und „leerem“ Akku[7] auch mechanische Antriebsleistung erbringen kann. Der Akku wird jedoch nicht geladen, sondern nur vor weiterem Entladen bewahrt.[7]
Ladeverfahren
Normalerweise wird der Akku über Nacht geladen. Die Ladedauer beträgt an einem in den USA üblichen 120-Volt-Stromanschluss etwa 10 Stunden, an den in Europa üblichen 230-Volt-Anschlüssen etwa 4 Stunden.[8] Diese Ladedauer ist allerdings nur mit einer festmontierten optionalen Ladestation oder mit einem optionalen Ladekabel mit Mennekes-Ladestecker an entsprechenden Ladestellen erreichbar, da nur so die maximale Leistung des Bordladers von etwa 3,3 kW genutzt werden kann. Über das mitgelieferte Ladekabel mit Niederspannungsnetz-Steckdosen kann in Europa nur mit 2,3 kW (10 A, Ladezeit 6 Stunden) oder 1,4 kW (6 A, Ladezeit 11 Stunden) geladen werden.[9]
Bei Fahrten, die die Reichweite des Fahrzeugs im Akkubetrieb übersteigen, wird der Strom für den Fahrmotor vom On-Board-Generator geliefert; überschüssige Energie, wie z. B. Bremsenergie, wird in elektrischen Strom umgewandelt und zum Laden der Akkus verwendet. Das Laden des Akkus durch Nutzung der Bremsenergie wird als Rekuperation oder Nutzbremse bezeichnet. Es kommt auch bei anderen Hybrid-Konzepten, wie z. B. bei Toyotas Hybrid Synergy Drive und fast allen Elektroautos, zur Anwendung.
Betriebsmodi
Zu Illustrationszwecken vereinfachte Darstellung eines Planetengetriebes mit zwei Planetenrädern, üblich sind drei oder mehr;
grün: Sonnenrad,
blau: Planetenräder,
rot: Hohlrad,
blassgelb: Achsen/Träger der blauen Planetenräder
Das Fahrzeug kann in 4 Fahrmodi gefahren werden. Welcher Modus zum Einsatz kommt, entscheidet die Elektronik anhand des Ladezustands der Akkus, der geforderten Leistung und der Geschwindigkeit.[1][7]
Elektrischer Betrieb: Modus eins und zwei
Bei geladenem Akku, also über 26 % der theoretischen Maximalladung, erfolgt rein elektrischer Betrieb (Modus 1 und 2). Modus 1 und 2 sind daher die am meisten verwendeten Modi, die auf der Mehrzahl der gefahrenen (kurzen) Strecken zum Einsatz kommen. Antriebsleistung wird von einem (Modus 1) oder beiden (Modus 2) Elektromotoren geleistet, der Verbrennungsmotor kommt in beiden Modi nicht zum Einsatz.[7]
Modus 1: Hauptantriebsmotor alleine
Der elektrische Hauptantriebsmotor treibt das Sonnenrad des Planetengetriebes (grün) an; das Hohlrad (rot) ist über eine geschlossene Kupplung mit dem Gehäuse verbunden: Es steht. Die Antriebsenergie wird über die Träger (gelb) der Planetenräder (blau) mit einer Übersetzung von 1:7 abgenommen.
Bei hoher Leistungsanforderung wie z. B. einer Geschwindigkeit von mehr als ca. 70 Meilen pro Stunde (113 km/h) wechselt die Elektronik in Modus zwei.
Modus 2: kombinierter Betrieb beider E-Motoren
Bei Geschwindigkeiten über 113 km/h (70 mph) kann der elektrische Hauptantriebsmotor nur mit ungünstigem Wirkungsgrad betrieben werden, da er dann über 6500/min drehen müsste. In diesem Fall und bei großer Leistungsanforderung wird eine Motorkupplung gelöst und der Generator wird als zweiter Elektromotor zusätzlich zum Antrieb verwendet.[7] Beide Motoren werden mit Akkustrom gespeist, der Verbrennungsmotor kommt nicht zum Einsatz.
Der Generator wird also nun als Motor verwendet und treibt das Hohlrad (rot) an, das sich nun in dieselbe Richtung wie das Sonnenrad dreht, jedoch deutlich langsamer. Damit kann die Drehzahl des Sonnenrades und somit auch des Hauptantriebsmotors gesenkt werden gegenüber stehendem Hohlrad.
Range-Extender-Betrieb
Ist der Akkumulator auf 20 % seiner theoretischen Kapazität entladen, so wird der Verbrennungsmotor gestartet. Er treibt den Generator an, um Fahrstrom zu liefern; zugleich wird der Akkuladezustand konstant gehalten. Im Range-Extender-Betrieb wird Antriebsleistung entweder nur vom elektrischen Hauptantriebsmotor geleistet, während parallel dazu der Verbrennungsmotor mit konstanter Drehzahl den notwendigen Fahrstrom liefert, oder Hauptantriebsmotor und Verbrennungsmotor erbringen die Antriebsleistung zusammen. Auch hier entscheidet die Elektronik vollautomatisch, in welchem Modus gefahren wird.[7]
Betriebsmodus 3
Das Fahrzeug wird weiterhin exklusiv über den elektrischen Hauptantriebsmotor angetrieben. Es besteht keine Verbindung zwischen Hohlrad und Generator. Der Verbrennungsmotor erzeugt über den Generator elektrische Energie, die über die Leistungselektronik für den Antrieb des Hauptantriebsmotors benutzt wird. Für optimalen Wirkungsgrad des Verbrennungsmotors läuft dieser in Modus 3 unabhängig von der Geschwindigkeit des Fahrzeugs mit konstanter Drehzahl.
Betriebsmodus 4
Wird in diesem Range-Extender-Betriebszustand hohe Leistung angefordert (hohe Geschwindigkeit oder bergiges Gelände), kann der an den Generator gekoppelte Verbrennungsmotor auch mechanisch an das Hohlrad gekoppelt werden. Da mehrere zusätzliche Energieumwandlungen (Verbrennungsmotor - Generator - E-Motor) entfallen, wird damit die Effizienz des Gesamtsystems hochgehalten und ab ca. 113 km/h (70 mph) die Maximaldrehzahl des elektrischen Hauptantriebsmotors begrenzt.[6] Nun liefert auch der Verbrennungsmotor unmittelbar auf die Räder wirkende Antriebsleistung. Ob der Generator nun ebenfalls als zusätzlicher elektrischer Antriebsmotor verwendet werden kann, ist ungeklärt. Alle drei Motoren, zwei elektrische und der Verbrennungsmotor, treiben nun zusammen das Fahrzeug an.[7]
Nach anderen Vermutungen wird der kleine Elektromotor bzw. Generator (in der Werksliteratur des Herstellers Fahrmotor "A" genannt) in diesem Modus als Generator genutzt, um den Fahrstrom für den großen Elektromotor/Generator (Fahrmotor "B") zu liefern, der dann das nötige Gegenmoment am Sonnenrad des Planetengetriebes liefert und somit ebenfalls das Fahrzeug antreibt. Gleichzeitig sinkt so die Drehzahl des Fahrmotors "B". Eine ähnliche Funktionsweise hat das Hybrid Synergy Drive beim Toyota Prius.
Akkumulator
Der Lithium-Ionen-Akkumulator hat eine Kapazität von 16 kWh und eine Masse von 198 kg.[10] Die Traktionsbatterie besteht aus 288 Zellen (je 3 parallel, 96 in Reihe)[11], die Traktionsspannung beträgt somit etwa 350 V. Die Fahrzeugelektronik ist programmiert, den Ladezustand des Akkus zwischen 30 % und 80 % zu halten, um seine Lebensdauer zu verlängern, so dass effektiv nur 8,8 kWh genutzt werden.[12][13]
Allerdings können laut Anzeige des Bordcomputers der Serienfahrzeuge bis zu 10,5 kWh entnommen werden. Mittlerweile liegen Fahrberichte vor, dass der Akkuladestand auf 18 % sinken kann (4,16 kWh), und bis zu 10,5 kWh verbraucht werden können. Dies würde bedeuten, dass die Akkus im Bereich 20 bis 85 % der Nennkapazität betrieben würden, also einer Spanne von 65 % der Nennkapazität.
Trotz fast identischer Kapazität ist die Masse des Voltec-Antriebs-Akkus fast 70 % geringer als jene des bis 1999 gebauten General Motors EV1. Der Akkupack wird bei niedrigen Außentemperaturen mittels eines integrierten elektrischen Heizelements und Wasser als Übertragungsmedium beheizt und bei hohen Umgebungs- bzw. Betriebstemperaturen durch die elektrisch per Hochspannung betriebene Klimaanlage gekühlt, um optimale Betriebsbedingungen sicherzustellen. General Motors gibt auf die Akkueinheit eine Garantie von acht Jahren bzw. 160.000 km.[14][15]
Elektrischer Verbrauch
Der elektrische Verbrauch, den die US-Behörde für Umweltschutz EPA ermittelt hat, beträgt 22,4 kWh/100 km. Dies entspricht einem Benzinäquivalent von 2,53 l/100 km (93 Meilen pro Gallone) bei vollständig geladenem Akku auf den ersten 56,3 km (35 Meilen).[16]
Benzinverbrauch
Da ein PKW mit Voltec-Antrieb erst dann Benzin verbraucht, wenn seine Akkus entladen sind, ist eine Verbrauchsangabe immer vor dem Hintergrund zu betrachten, ob der Wagen rein elektrisch, gemischt oder – bei vollständig entladenen Akkus – über den Umweg der Stromerzeugung ausschließlich mit Hilfe des Verbrennungsmotors bewegt wird. In letzterem Fall liegt der Benzinverbrauch dann bei 6,36 l/100 km (37 mpg)[17] und bei 3,92 l/100 km (60 mpg) benzinäquivalent im kombinierten Betrieb gemäß EPA.
Quelle
Motoren eines Chevrolet Volt bei einer öffentlichen Ausstellung in einer Metro-Station in Washington D.C., links der Verbrennungsmotor, rechts der Elektromotor
Prinzip
Das Motorsystem[1] besteht aus drei Arbeitsmaschinen/Kraftmaschinen:
einem Elektromotor als Hauptantrieb, der bei der Rekuperation auch als Generator arbeitet,
einem On-Board-Generator, der teilweise auch als Antriebsmotor eingesetzt wird, sowie
einem Benzinmotor, der hauptsächlich zum Antrieb des Generatormotors dient.
Über ein Planetengetriebe mit drei hydraulisch betätigten Motorkupplungen werden die drei Motoren auf unterschiedliche Weise gekoppelt. Der jeweils optimale Betriebsmodus wird je nach Betriebszustand vollautomatisch elektronisch gewählt. Die eingesetzten Motorkupplungen sind dabei immer entweder offen oder geschlossen. Eine "rutschende Kupplung", wie sie bei PKWs mit Handschaltgetriebe vom Fahrer für den Anfahrvorgang verwendet wird, gibt es beim Voltec-Antrieb in keinem der Fahrmodi, sondern nur sehr kurz beim Wechsel der Modi.
In erster Linie erfolgt der Antrieb des Fahrzeugs durch einen Elektromotor mit einer Spitzenleistung von 111 kW (151 PS).[5] Wenn die Akkus des Fahrzeugs weitgehend entladen sind, springt der nicht aufgeladene 1,4-Liter-4-Zylinder-Benzin-Motor mit einer Leistung von 63 kW (84 PS) an und speist den On-Board-Generator, der nun elektrischen Strom für den Hauptantrieb liefert.[6] Das Design wird als teilweise serieller Hybridantrieb bezeichnet, da der Verbrennungsmotor einen Generator mit Energie versorgt, der den Strom für den E-Motor erzeugt. Es ist ebenfalls ein teilweise paralleler Hybridantrieb, da der Benzinmotor bei hoher Leistungsanforderung und „leerem“ Akku[7] auch mechanische Antriebsleistung erbringen kann. Der Akku wird jedoch nicht geladen, sondern nur vor weiterem Entladen bewahrt.[7]
Ladeverfahren
Normalerweise wird der Akku über Nacht geladen. Die Ladedauer beträgt an einem in den USA üblichen 120-Volt-Stromanschluss etwa 10 Stunden, an den in Europa üblichen 230-Volt-Anschlüssen etwa 4 Stunden.[8] Diese Ladedauer ist allerdings nur mit einer festmontierten optionalen Ladestation oder mit einem optionalen Ladekabel mit Mennekes-Ladestecker an entsprechenden Ladestellen erreichbar, da nur so die maximale Leistung des Bordladers von etwa 3,3 kW genutzt werden kann. Über das mitgelieferte Ladekabel mit Niederspannungsnetz-Steckdosen kann in Europa nur mit 2,3 kW (10 A, Ladezeit 6 Stunden) oder 1,4 kW (6 A, Ladezeit 11 Stunden) geladen werden.[9]
Bei Fahrten, die die Reichweite des Fahrzeugs im Akkubetrieb übersteigen, wird der Strom für den Fahrmotor vom On-Board-Generator geliefert; überschüssige Energie, wie z. B. Bremsenergie, wird in elektrischen Strom umgewandelt und zum Laden der Akkus verwendet. Das Laden des Akkus durch Nutzung der Bremsenergie wird als Rekuperation oder Nutzbremse bezeichnet. Es kommt auch bei anderen Hybrid-Konzepten, wie z. B. bei Toyotas Hybrid Synergy Drive und fast allen Elektroautos, zur Anwendung.
Betriebsmodi
Zu Illustrationszwecken vereinfachte Darstellung eines Planetengetriebes mit zwei Planetenrädern, üblich sind drei oder mehr;
grün: Sonnenrad,
blau: Planetenräder,
rot: Hohlrad,
blassgelb: Achsen/Träger der blauen Planetenräder
Das Fahrzeug kann in 4 Fahrmodi gefahren werden. Welcher Modus zum Einsatz kommt, entscheidet die Elektronik anhand des Ladezustands der Akkus, der geforderten Leistung und der Geschwindigkeit.[1][7]
Elektrischer Betrieb: Modus eins und zwei
Bei geladenem Akku, also über 26 % der theoretischen Maximalladung, erfolgt rein elektrischer Betrieb (Modus 1 und 2). Modus 1 und 2 sind daher die am meisten verwendeten Modi, die auf der Mehrzahl der gefahrenen (kurzen) Strecken zum Einsatz kommen. Antriebsleistung wird von einem (Modus 1) oder beiden (Modus 2) Elektromotoren geleistet, der Verbrennungsmotor kommt in beiden Modi nicht zum Einsatz.[7]
Modus 1: Hauptantriebsmotor alleine
Der elektrische Hauptantriebsmotor treibt das Sonnenrad des Planetengetriebes (grün) an; das Hohlrad (rot) ist über eine geschlossene Kupplung mit dem Gehäuse verbunden: Es steht. Die Antriebsenergie wird über die Träger (gelb) der Planetenräder (blau) mit einer Übersetzung von 1:7 abgenommen.
Bei hoher Leistungsanforderung wie z. B. einer Geschwindigkeit von mehr als ca. 70 Meilen pro Stunde (113 km/h) wechselt die Elektronik in Modus zwei.
Modus 2: kombinierter Betrieb beider E-Motoren
Bei Geschwindigkeiten über 113 km/h (70 mph) kann der elektrische Hauptantriebsmotor nur mit ungünstigem Wirkungsgrad betrieben werden, da er dann über 6500/min drehen müsste. In diesem Fall und bei großer Leistungsanforderung wird eine Motorkupplung gelöst und der Generator wird als zweiter Elektromotor zusätzlich zum Antrieb verwendet.[7] Beide Motoren werden mit Akkustrom gespeist, der Verbrennungsmotor kommt nicht zum Einsatz.
Der Generator wird also nun als Motor verwendet und treibt das Hohlrad (rot) an, das sich nun in dieselbe Richtung wie das Sonnenrad dreht, jedoch deutlich langsamer. Damit kann die Drehzahl des Sonnenrades und somit auch des Hauptantriebsmotors gesenkt werden gegenüber stehendem Hohlrad.
Range-Extender-Betrieb
Ist der Akkumulator auf 20 % seiner theoretischen Kapazität entladen, so wird der Verbrennungsmotor gestartet. Er treibt den Generator an, um Fahrstrom zu liefern; zugleich wird der Akkuladezustand konstant gehalten. Im Range-Extender-Betrieb wird Antriebsleistung entweder nur vom elektrischen Hauptantriebsmotor geleistet, während parallel dazu der Verbrennungsmotor mit konstanter Drehzahl den notwendigen Fahrstrom liefert, oder Hauptantriebsmotor und Verbrennungsmotor erbringen die Antriebsleistung zusammen. Auch hier entscheidet die Elektronik vollautomatisch, in welchem Modus gefahren wird.[7]
Betriebsmodus 3
Das Fahrzeug wird weiterhin exklusiv über den elektrischen Hauptantriebsmotor angetrieben. Es besteht keine Verbindung zwischen Hohlrad und Generator. Der Verbrennungsmotor erzeugt über den Generator elektrische Energie, die über die Leistungselektronik für den Antrieb des Hauptantriebsmotors benutzt wird. Für optimalen Wirkungsgrad des Verbrennungsmotors läuft dieser in Modus 3 unabhängig von der Geschwindigkeit des Fahrzeugs mit konstanter Drehzahl.
Betriebsmodus 4
Wird in diesem Range-Extender-Betriebszustand hohe Leistung angefordert (hohe Geschwindigkeit oder bergiges Gelände), kann der an den Generator gekoppelte Verbrennungsmotor auch mechanisch an das Hohlrad gekoppelt werden. Da mehrere zusätzliche Energieumwandlungen (Verbrennungsmotor - Generator - E-Motor) entfallen, wird damit die Effizienz des Gesamtsystems hochgehalten und ab ca. 113 km/h (70 mph) die Maximaldrehzahl des elektrischen Hauptantriebsmotors begrenzt.[6] Nun liefert auch der Verbrennungsmotor unmittelbar auf die Räder wirkende Antriebsleistung. Ob der Generator nun ebenfalls als zusätzlicher elektrischer Antriebsmotor verwendet werden kann, ist ungeklärt. Alle drei Motoren, zwei elektrische und der Verbrennungsmotor, treiben nun zusammen das Fahrzeug an.[7]
Nach anderen Vermutungen wird der kleine Elektromotor bzw. Generator (in der Werksliteratur des Herstellers Fahrmotor "A" genannt) in diesem Modus als Generator genutzt, um den Fahrstrom für den großen Elektromotor/Generator (Fahrmotor "B") zu liefern, der dann das nötige Gegenmoment am Sonnenrad des Planetengetriebes liefert und somit ebenfalls das Fahrzeug antreibt. Gleichzeitig sinkt so die Drehzahl des Fahrmotors "B". Eine ähnliche Funktionsweise hat das Hybrid Synergy Drive beim Toyota Prius.
Akkumulator
Der Lithium-Ionen-Akkumulator hat eine Kapazität von 16 kWh und eine Masse von 198 kg.[10] Die Traktionsbatterie besteht aus 288 Zellen (je 3 parallel, 96 in Reihe)[11], die Traktionsspannung beträgt somit etwa 350 V. Die Fahrzeugelektronik ist programmiert, den Ladezustand des Akkus zwischen 30 % und 80 % zu halten, um seine Lebensdauer zu verlängern, so dass effektiv nur 8,8 kWh genutzt werden.[12][13]
Allerdings können laut Anzeige des Bordcomputers der Serienfahrzeuge bis zu 10,5 kWh entnommen werden. Mittlerweile liegen Fahrberichte vor, dass der Akkuladestand auf 18 % sinken kann (4,16 kWh), und bis zu 10,5 kWh verbraucht werden können. Dies würde bedeuten, dass die Akkus im Bereich 20 bis 85 % der Nennkapazität betrieben würden, also einer Spanne von 65 % der Nennkapazität.
Trotz fast identischer Kapazität ist die Masse des Voltec-Antriebs-Akkus fast 70 % geringer als jene des bis 1999 gebauten General Motors EV1. Der Akkupack wird bei niedrigen Außentemperaturen mittels eines integrierten elektrischen Heizelements und Wasser als Übertragungsmedium beheizt und bei hohen Umgebungs- bzw. Betriebstemperaturen durch die elektrisch per Hochspannung betriebene Klimaanlage gekühlt, um optimale Betriebsbedingungen sicherzustellen. General Motors gibt auf die Akkueinheit eine Garantie von acht Jahren bzw. 160.000 km.[14][15]
Elektrischer Verbrauch
Der elektrische Verbrauch, den die US-Behörde für Umweltschutz EPA ermittelt hat, beträgt 22,4 kWh/100 km. Dies entspricht einem Benzinäquivalent von 2,53 l/100 km (93 Meilen pro Gallone) bei vollständig geladenem Akku auf den ersten 56,3 km (35 Meilen).[16]
Benzinverbrauch
Da ein PKW mit Voltec-Antrieb erst dann Benzin verbraucht, wenn seine Akkus entladen sind, ist eine Verbrauchsangabe immer vor dem Hintergrund zu betrachten, ob der Wagen rein elektrisch, gemischt oder – bei vollständig entladenen Akkus – über den Umweg der Stromerzeugung ausschließlich mit Hilfe des Verbrennungsmotors bewegt wird. In letzterem Fall liegt der Benzinverbrauch dann bei 6,36 l/100 km (37 mpg)[17] und bei 3,92 l/100 km (60 mpg) benzinäquivalent im kombinierten Betrieb gemäß EPA.
Quelle
Andy- Admin
- Anzahl der Beiträge : 36197
Anmeldedatum : 03.04.11
Ähnliche Themen
» Der Dieselhydraulischer Antrieb
» Alternativ-Antrieb bestand den Test
» Bike Camper mit Spiritus-Heizung und E-Antrieb
» Alternativ-Antrieb bestand den Test
» Bike Camper mit Spiritus-Heizung und E-Antrieb
Seite 1 von 1
Befugnisse in diesem Forum
Sie können in diesem Forum nicht antworten
Heute um 4:25 am von Andy
» END OF GREEN
Heute um 4:21 am von Andy
» zozyblue
Heute um 4:18 am von Andy
» MAGNUM
Heute um 4:14 am von Andy
» Natasha Bedingfield
Heute um 4:12 am von Andy
» ... TRAKTOR ...
Heute um 4:10 am von Andy
» = Azillis =
Heute um 4:07 am von Andy
» Alice Cooper
Heute um 4:04 am von Andy
» Art of Trance
Heute um 4:02 am von Andy